54 research outputs found

    Radiation protection at CERN

    Full text link
    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.Comment: 22 pages, contribution to the CAS - CERN Accelerator School: Course on High Power Hadron Machines; 24 May - 2 Jun 2011, Bilbao, Spai

    Commissioning of the CNGS Extraction in SPS LSS4

    Get PDF
    The CNGS project (CERN Neutrino to Gran Sasso) aims at directly detecting ĂŽÂœĂŽÂŒ - ĂŽÂœĂ oscillations. For this purpose an intense ĂŽÂœĂŽÂŒ beam is generated at CERN and directed towards LNGS (Laboratori Nazionali del Gran Sasso) in Italy, about 730 km from CERN. The neutrinos are generated from the decay of pions and kaons which are produced by 400 GeV protons hitting a graphite target. The protons are extracted from the SPS straight section 4 (LSS4) in two 10.5 ï­s batches, nominally 2.4 Ñ 1013 protons each, at an interval of 50 ms. The high intensity extracted beam can cause damage to equipment if lost in an uncontrolled way, with the extraction elements particularly at risk. In addition, the beam losses at extraction must be very well controlled to avoid unacceptably high levels of radiation. To guarantee safe operation and limit radiation, the LSS4 extraction system was thoroughly commissioned with beam during the CNGS commissioning in summer 2006. The obtained results in terms of aperture in the extraction channel, longitudinal loss patterns, extraction losses and radiation during nominal operation are summarised in this note

    The CERN Neutrino beam to Gran Sasso (NGS)

    Get PDF
    The conceptual technical design of the NGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. Additional information, in particular an update on various neutrino beam options for the NGS facility, has been provided in a memorandum to the CERN-SPSC Committee (CERN-SPSC/98-35). In the present report, further improvements on the NGS design and performance, in particular new scenarios for SPS proton cycles for NGS operation and a new version of the NGS "high energy" neutrino beam for nt appearance experiments, are described. This new NGS reference beam is estimated to provide three times more nt events per year than the beam presented in the 1998 report. The radiological aspects of the NGS facility have been re-examined with the new beam design. An updated version of the construction schedule is also presented

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Collimation for the LHC high intensity beams

    Get PDF
    The unprecedented design intensities of the LHC require several important advances in beam collimation. With its more than 100 collimators, acting on various planes and beams, the LHC collimation system is the biggest and most performing such system ever designed and constructed. The solution for LHC collimation is explained, the technical components are introduced and the initial performance is presented. Residual beam leakage from the system is analysed. Measurements and simulations are presented which show that collimation efficiencies of better than 99.97 % have been measured with the 3.5 TeV proton beams of the LHC, in excellent agreement with expectations.peer-reviewe

    Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Get PDF
    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill

    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Get PDF
    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved

    Radiation protection studies for the SHiP facility

    No full text
    The enlarged scope of the recently proposed experiment to search for Heavy Neutral Leptons, SPSC-EOI-010, is a general purpose fixed target facility which in the initial phase is aimed at a general Search for Hidden Particles (SHiP) as well as tau neutrino physics. This report summarizes radiation protection considerations for the SHiP facility and the primary beam extraction for SHiP
    • 

    corecore